
Abstract Perimetric nuclear coordinates of a triatomic
molecule treat all three nuclei equivalently and are not
subject to the triangle conditions. Through an appro-
priate orthogonal transformation they can be separated
into one scale coordinate, viz., the circumference, and
two shape coordinates, which are determined by the
angles. The parameter space of the shape coordinates is
an equilateral triangle. The basic formulas are given and
the relationship between points in coordinate space and
molecular shapes are elucidated.
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1 Introduction

Many features of polyatomic potential energy surfaces
(PES) do not appear in the paradigm of diatomic
potential energy curves. Moreover, because of our
inability to ``see'' in more than three dimensions, their
visualization is di�cult. Triatomic molecules, being the
smallest molecules with multidimensional PES, represent
the necessary next step in understanding PES depending
on more than one internal coordinate. They have three
internal coordinates and furnish the simplest material on
which to study, and become familiar with, features of
general PES. Even in this case, however, an e�ort is
required in order to relate the points in the internal
coordinate space to the actual molecular shapes. We
encountered this problem in the accompanying study of
ozone [1], which led to the account presented below.

In discussions of triatomic molecules, it is desirable to
be able to express and visualize PES or other properties
as functions of the three internal coordinates in a way
that treats all three atoms on an equal footing. Hyper-
spherical coordinate systems [2±4] meet this requirement,
but these mass-dependent coordinates are not easily re-
lated to the geometric shape of the molecules they des-
cribe. A simpler parametrization which treats all three
atoms symmetrically is given by the so-called perimetric

coordinates. These were introduced in quantum chem-
istry by James and Coolidge [5] in the 1930s and used
later by Pekeris [6], in both instances for electronic cal-
culations on the He atom. Davidson [7] seems to have
been the ®rst to use and discuss perimetric coordinates
for nuclear coordinates of triatomics. In the present note
we examine this parametrization, establish its connec-
tion with Murrell's symmetry coordinates [8], separate
the coordinates into scale and shape components, and
illustrate the relationships between points in parameter
space and molecular geometries.

2 Perimetric coordinates

2.1 De®nition

The three distances r12; r23; r13, between the nuclei
N1;N2;N3 are the most natural independent coordinates
that treat the three nuclei equivalently, but they have the
drawback of being subject to the triangle conditions
rij � rjk � rik. This shortcoming is eliminated by the
perimetric coordinates de®ned as

si � �rij � rik ÿ rjk�=2; �1�
where �i; j; k� represents any permutation of �1; 2; 3�.
Inversion of Eq. (1) yields

si � sj � rij; �2�
and Eqs. (1) and (2) are equivalent to the equations

si � rjk � s � r=2; �3�
where

s � �s1 � s2 � s3�; �4�
r � �r12 � r23 � r13�: �5�
The geometric meanings of s1; s2; s3 are illustrated by
Fig. 1, which is self-evident in view of Eq. (2). The points
which separate the two segments si and sj on the side rij
are, in fact, the points where the inscribed circle touches
the three sides of the molecular triangle [9]. The lines
connecting the corners to the center of the inscribed
circle bisect the respective angles.
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2.2 Scale and shape

The relation of the lengths si and rij to the angles can be
derived from the formula

rij � 2R sin/k; �6�
where R is the radius of the circumscribed circle [9].
From Eq. (6) follows

rij=r � sin/k=
X
1

sin/1 �7�

and

si � sfi �8�
with

fi � fi�/1;/2;/3� � 1ÿ 2 sin/i=
X

k

sin/k: �9�

Manifestly,X
i

fi � 1: �10�

It is apparent that, in Eq. (8), the parameter s determines
the overall size of the molecule; it is a scale factor. The
angular functions fi�/1;/2;/3�; on the other hand,
determine the angular appearance of the molecule;
they are shape factors. By virtue of the relation
/1 � /2 � /3 � p; the right-hand side of Eq. (9) can be
recast in the form

fi � tan
1

2
/j � tan

1

2
/k: �11�

2.3 Parameter space

Let the parameter space be spanned by a Cartesian axis
system along which the �s1; s2; s3� are taken as coordi-
nates. Since the three perimetric coordinates vary
independently from zero to in®nity, only the ®rst octant
is used. In this parameter space, molecules of the same
angular shape are given by the coordinates of Eq. (8)
with constant factors fi; i.e. by points which fall on
straight rays through the origin, the internuclear dis-
tances being proportional to s.

The points along the diagonal of the ®rst octant, for
which s1 � s2 � s3; correspond to equilateral molecules
for which f1 � f2 � f3 � 1=3.

Isosceles molecules correspond to points on the
planes si � sj; for example, the plane s1 � s2 contains all
isosceles triangles with the nucleus N3 at the apex.

The three coordinate planes si � 0 contains the points
representing linear molecules. For example, the s1 ÿ s2
plane, corresponding to s3 � 0, contains the linear
molecules with nucleus N3 in between nuclei N1 and N2

and with the internuclear distances r13 � s1; r23 � s2;
r12 � r13 � r23 � s1 � s2. Hence, all such linear molecules
with r12 � constant are located on a straight line which
lies in the s3 � 0 plane and intersects the s1 as well as the
s2 axis at 45�.

The points on the three coordinate axes correspond
to the coincidence of two nuclei. For example, the s1 axis
corresponds to s2 � s3 � 0 and the coincidence of nuclei
N2 and N3, with r12 � r13 � s1. The origin corresponds
to the coincidence of all three nuclei.

3 Separation of scale and shape components

3.1 Rotation of coordinate basis

A separation of scale and shape coordinates is obtained
by considering all molecules with a given circumference
r � 2s. By virtue of Eq. (8) they are given by the points
lying in the plane

s1 � s2 � s3 � s � constant; �12�
i.e. in a plane perpendicular to the diagonal of the ®rst
octant and intercepting all three axes at a distance
s � r=2 from the origin. Accordingly, we introduce a
new right-handed set of basis vectors d1; d2; d3 by the
orthogonal transformation

d1 d2 d3

e1 ÿ1=2 ÿ1=p6 1=
p
3

e2 1=
p
2 ÿ1=p6 1=

p
3

e3 0 2=
p
6 1=

p
3;

�13�

where e1; e2; e3 denote the unit basis vectors along the
axis s1; s2; s3. Since d3 points along the ®rst octant
diagonal, the vectors �d1; d2� span a plane passing
through the origin and parallel to all planes s �
constant. The orientation of these basis vectors is shown
in Fig. 2. If x1; x2; x3 denote the new coordinates along
the vectors �d1; d2; d3�, thenX

i

eisi �
X

k

dkxk; �14�

and the transformation between �s1; s2; s3� and �x1; x2; x3�
is given by the same orthogonal transformation:

x1 x2 x3

s1 ÿ1=p2 ÿ1=p6 1=
p
3

s2 1=
p
2 ÿ1=p6 1=

p
3

s3 0 2=
p
6 1=

p
3:

�15�

Fig. 1. Geometric meaning of the perimetric coordinates s1; s2; s3
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It entails

x3 � �s1 � s2 � s3�=
���
3
p
� s=

���
3
p
� r= 2

���
3
p� �

; �16�
con®rming that the plane s � constant is the plane
x3 � constant and spanned by the coordinates �x1; x2�.

Since the three-dimensional parameter space is lim-
ited to the ®rst octant, the two-dimensional parameter
plane for x3 � constant is limited to an equilateral tri-
angle as illustrated, perspectively, in Fig. 3. The ®rst
octant diagonal penetrates this triangle in its origin
x1 � x2 � 0 at a distance x3 from the origin of the
s1; s2; s3 coordinate system. The coordinates �s1; s2; s3� of
a number of points on the triangle s � constant are also
given on Fig. 3. From these coordinates the dimensions
of the triangle are found to be as follows: the origin lies
two-thirds of the way from each corner to its opposite
side, the side length is s

���
2
p

, and the height is s
��������
3=2

p
.

Figure 4 provides a plane view of this triangle with the
coordinate axis x1; x2 on it. The corners are numbered by
the axes s1; s2; s3 penetrating the plane at those points.

In terms of the present coordinates, the symmetry
coordinates, Sk; of Murrell [8] are given by S1 � 2x3;
S2 � x1 and S3 � ÿx2.

3.2 Scale-independent shape coordinates

The linear size of the parameter triangle spanned by
x1; x2 is proportional to the molecular scale parameter s.
The shape of the molecule is given by the relative

position of the representative point inside the triangle,
i.e. by the two scale-independent parameters

n1 � x1=s; n2 � x2=s: �17�
These two independent shape coordinates are equivalent
to the three angles /1;/2;/3; which are subject to the
constraint /1 � /2 � /3 � p. By virtue of the relations
si � sfi [see Eq. (8)] and the orthogonal transformation,
Eq.(15), between the xi and the sj; the two independent
shape coordinates n1; n2 are related to the three depen-
dent shape factors of Eqs.(9) and (11) by the orthogonal
transformation

n1 n2 n3 � 1=
p
3

f1 ÿ1=p2 ÿ1=p6 1=
p
3

f2 1=
p
2 ÿ1=p6 1=

p
3

f3 0 2=
p
6 1=

p
3;

�18�

where we formally introduced n3 � x3=s � 1=
p
3 [see

Eq. (16)]. Manifestly, the parameter space of the scale-
independent shape coordinates �n1; n2� also forms an
equilateral triangle. The side of this triangle has a length
of
p
2 and its height is

��������
3=2

p � 3=
���
6
p

.
From Eq.(18) one obtains for the si the following

expression in terms of the independent scale-shape co-
ordinates �s; ni; n2� :

s1 � s�ÿn1=
���
2
p
� n2=

���
6
p
� 1=3�

s2 � s�n1=
���
2
p
� n2=

���
6
p
� 1=3�

s3 � s�ÿ2n2=
���
6
p
� 1=3�;

�19�

from which follows, by virtue of Eq.(2),

r13 � s�ÿn1=
���
2
p
ÿ n2=

���
6
p
� 2=3�

r23 � s�n1=
���
2
p
ÿ n2=

���
6
p
� 2=3�

r12 � s��2n2=
���
6
p
� 2=3�:

�20�

Fig. 2. Basis vectors for perimetric scale-shape coordinates

Fig. 3. Perspective view of two dimensional parameter plane for shape
coordinates

Fig. 4. Coordinates on parameter plane of the shape coordinates. The
points I1, I2, I3 are the same as those so labelled in Fig. 3
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4 Relation between coordinate points
and molecular shapes

4.1 General relationships

The visualization of molecules represented by arbitrary
points in the triangle of the parameters x1; x2 is
facilitated by the following theorem which is readily
proved in the three-dimensional coordinate space of
�s1; s2; s3�, depicted in Fig. 3:

The perpendicular distance Dj between an arbitrary
point in the parameter triangle and the side opposite to the
corner j is related to the coordinate sj by

Dj � sj

��������
3=2

p
: �21�

From it follows the corollary

D1 �D2 �D3 � s
��������
3=2

p
� height of triangle

� independent of shape, �22�
in agreement with a geometrical theorem about equilat-
eral triangle. Figure 5 depicts the distances Dk as well as
the distances D0k to the circumscribed equilateral triangle.
By virtue of Eq. (21), the latter distances D0k are given by

D0k � (height of original triangle) ÿDk � �sÿ sk�
��������
3=2

p
;

� �si � sj�
��������
3=2

p
� rij

��������
3=2

p
: �23�

It is easily seen that the limitation of the representative
points to the original, shaded triangle in Fig. 5 is
equivalent to the triangle conditions on the distance rij:

If dj � Dj=s denotes the distance corresponding to Dj
in the triangle of the scale-independent shape coordi-
nates �n1; n2�; then they satisfy the corresponding
identities

dj � fj

��������
3=2

p
�24�

and

d1 � d2 � d3 �
��������
3=2

p
� height: �25�

For the distances d0i to the circumscribed triangle,
corresponding to the distances Di, one obtains

d0i � �1ÿ fi�
��������
3=2

p
� �rjk=r�

���
6
p

: �26�
Also of interest are the lines along which any one of

the angles of the molecule is constant. If one angle is
®xed, say /3, then /2 is given by /1 because the sum of
all three is p. A parametric representation of the curves
fn1�/1�; n2�/1�g for constant /3 is then obtained by
substituting the expression of Eq. (9) or Eq. (11), with
/3 � constant and /2 � pÿ /3 ÿ /1, in the equations

n1 � �f2 ÿ f1�=
���
2
p

n2 � �2f3 ÿ f1 ÿ f2�=
���
6
p

�27�
which follow from Eq. (18). Figure 6 displays the
curvilinear grid of the curves

/j � 15�; 30�; 45�; 60�; 75�; 90�; 105�; 120�; 135�; 150�; 180�

for j � 1; 2; 3. The plot shows that all acute molecules lie
inside the shaded area enclosed by the lines /1 �
90�;/2 � 90� and /3 � 90� which become tangent at the
corners where two nuclei coincide. The three unshaded
areas correspond to the three types of obtuse molecules.

4.2 Illustrative examples

Since the ®rst octant diagonal of the �s1; s2; s3� space
penetrates the shape coordinate triangle at the origin
n1 � n2 � 0, this point corresponds to the equilateral
molecule with sides s=3. From what has been said earlier,
it is also apparent that the isosceles molecules corres-
pond to points on the lines from the three corners,
through the origin to the mid-points of the opposite
sides. For example, the n2 axis contains the isosceles
molecules with the nucleus N3 at the apex. From the

Fig. 5. De®nition of D1;D2;D3 for Eq. (21) and D
0
1;D

0
2;D

0
3; for Eq. (23)

Fig. 6. Curves of constant angle in scale-independent shape coordinate
space. The curves /j � constant are convex towards corner j.
Increments: D/j � 15°. Bold: 60°. Dashed: 120°. Shaded area:
/1;/2;/3 all � 90°
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discussion of the three-dimensional parameter space, it is
also seen that the three sides of the shape-coordinate
triangle correspond to linear molecules, the points on the
side connecting the corners i and j representing the linear
molecules with the nucleus Nk lying between the nuclei
Ni and Nj.

Some illustrative examples of oblique triangles are
displayed in Fig. 7.

Of importance is the case of linear molecules. If nu-
cleus N3 lies between nuclei N1 and N2, then one has

/1 � 0; /2 � 0; /3 � p; r12 � r13 � r23;

s3 � 0; s1 � r13; s2 � r23; s � s1 � s2;
�28�

and the shape factors become

f1 � s1=�s1 � s2� � r13=�r12 � r23�;
f2 � s2=�s1 � s2� � r23=�r12 � r23�;
f3 � 0

�29�

By virtue of Eqs. (24) and (29), we have d3 � 0 so that
the parameter point lies indeed on the (1±2) side of the
shape-coordinate triangle. Such a point is shown in
Fig. 8. Since the corner angle is 60�, one obtains for the
segments r1; r2 on the triangle side [note Eq. (24)]

r1 � d22=
���
3
p
� f2

���
2
p
�

���
2
p

r23=�r13 � r23�;
r2 � d12=

���
3
p
� f1

���
2
p
�

���
2
p

r13=�r13 � r23�;
�30�

which indeed add up to the side length
p
2. The

coordinates of this point are therefore found to be

n1 � r1 ÿ
���
2
p

=2 �
���
2
p
�r23 ÿ r13�=r; n2 � ÿ1=

���
6
p

:

�31�
4.3 Symmetry

The Cs symmetry, possessed by all triatomic molecules,
is intrinsic to the entire perimetric parameter space. The
latter is invariant with respect to the molecular Cs group.

If the nuclei N1 and N2 are identical, then all points
on the plane spanned by the x3 and x2 � sn2 axes cor-
respond to molecules with C2v symmetry, i.e. the plane
x1 � 0 is ``C2v restricted''. Moreover, any two points in
the remainder of the coordinate space obtained from
each other by re¯ection through this plane describe two
molecules which are each other's mirror image with
respect to a plane bisecting the N1·N2 bond. Conse-
quently, any molecular function which is invariant with
respect to the interchange of N1 and N2 will have Cs
symmetry in the �x1; x2; x3� coordinate space, with x1 � 0
de®ning the Cs mirror plane.

If all three atoms are identical, then analogous con-
siderations show that not only the plane of x1 � 0, but
also the two planes obtained from it by rotation through
� 120� around the x3 axis are (1) C2v restricted and (2)
symmetry planes for any function that is invariant under
the permutation of any of the nuclei. In fact, any such
function possesses C3v symmetry in the coordinate space.
The x3 axis corresponds to molecules with D3h symme-
try.

In the subspace de®ned by x1 � 0 which, when N1

and N2 are identical nuclei, corresponds to C2v symme-
try, i.e. isosceles molecules, it is often convenient to
make use of the coordinates x and y de®ned in Fig. 9. It
is therefore useful to know the coordinate grid de®ned
by the lines s � constant and x2 � constant in the �x; y�
plane.

From the de®nitions of s and x2 [see Eqs. (3)±(5),(15)]
and from Fig. 9, one readily derives

s � s�x; y� � �x2 � y2�1=2 � x; �32�

Fig. 7a-c. Examples of molecular shapes for selected points in the
scale-independent shape coordinate plane. a Isosceles molecules with
N3 at the apex. b Molecules with constant r12 distance. c Molecules
related to each other by permutations of atoms Fig. 8. Coordinate point of a linear molecule N1N2N3
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x2 � x2�x; y� � ��x2 � y2�1=2 ÿ 2x�
��������
2=3

p
: �33�

The inversion of these equations yields

x � x�s; x2� � s=3ÿ x2=
���
6
p

; �34�
y � y�s; x2� � s��1�

���
6
p

x2=s�=3�1=2: �35�
From Eqs. (32) to (35), one readily ®nds the lines of

constant s and x2. The lines s � constant are given by the
parabolas

y2 � 2sx � s2; �s � const�: �36�
The lines x2 � constant are given by the hyperbola
branches

6�x� x2
��������
2=3

p
�2 ÿ 2y2 � x22; �x2 � const.� �37�

x � max 0;ÿx2
��������
3=8

pn o
�38�

The sections of these curves in the ®rst quadrant are
displayed in Fig. 10a. The points on the two axes
correspond to the limits of x2 for given s. The points on
the x axis correspond to the lower limits x2 � ÿs=

p
6;

the points on the y axis correspond to the upper limits
x2 � 2s=

p
6. This is illustrated in Fig. 10b, which also

indicates the values of x and y at these limits.
The lines corresponding to the shape coordinates

n2 � x2=s � constant are obtained by dividing Eq. (34)
into Eq. (35), which yields the straight lines

3 1�
���
6
p

n2
� �h i1=2

xÿ 1ÿ 1

2

���
6
p

n2

� �
y � 0; �n2 � const.�

�39�
These are displayed in Fig. 10c.

5 Extended shape coordinate space

Certain continuous deformations of the molecule are not
accounted for by continuous coordinate changes in the

discussed coordinate space, namely the in-plane inver-
sions of a triatomic molecule through the linear
structures. If, in the spirit of considering only internal
coordinate variations, out-of-plane motions are exclud-
ed, then these inversions change a clockwise ordering of
the three atoms into a counterclockwise ordering. Such
deformations can be accounted for by suitably enlarging
the coordinate space, as illustrated in Fig. 11. The
consecutive deformations exhibited in Fig. 11a are
represented by the sequence of points in the coordinate
space of Fig. 11b, where a second coordinate triangle has
been attached to the original one through re¯ection with

Fig. 9. Coordinates x and y for isosceles molecules

Fig. 10a-c. Lines s � constant; x2 � constant, and n2 � constant on
the �x; y� plane
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respect to the line connecting corners 2 and 3. Further
thought shows that this kind of enlargement has to be
repeated in all directions over the entire x1 ÿ x2 plane in
order to cover all possible molecular in-plane inversions
by continuous coordinate curves. The entire x1 ÿ x2
plane is thus divided into coordinate triangles, half of
them with clockwise ordering, the other half with
counterclockwise ordering of atoms, as shown in
Fig. 11c. They are related by the translational grid of
symmetry elements also shown in that ®gure: a set of
trigonal rotation axes and three sets of re¯ection axes.
Such translational symmetry grids are typical for
internal shape coordinates. (Another such translational
grid for another set of internal coordinates has been
discussed in an investigation of another PES [10].)

The enlargement of the coordinate triangle serves the
purpose of visualizing the energy changes for all nuclear
rearrangements. As an example, Fig. 12 displays the PES
contours of the ground state of ozone [1] in the enlarged
parameter space. (Ozone has, of course, an additional
C3v symmetry within each triangle, as discussed in Sect.
4.3.) The white areas near the triangle corners are the
areas where two atoms come so close that the energy
becomes extremely high and is not calculated. This
would not be the case, of course, if the purely electronic
PES were plotted (i.e. without nuclear repulsions).
Manifestly, only energy values within the dashed line of

Fig. 12 are required for understanding all in-plane in-
versions through linear con®gurations.

The described coordinate space extension has one
severe shortcoming. Namely, the PES contours have
discontinuous ®rst derivatives on the edges separating
the di�erent coordinate triangles, a fact which is also
illustrated by Fig. 12. This will present problems if
critical points of interest have linear geometries.

It may also be noted that, for very small values of s,
all three atoms come very close to each other, so that the
PES tends to in®nity and becomes highly repulsive.
These regions of coordinate space are thus inaccessible
and there is no need to deal with very small and negative
values of the coordinate x3.
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